MATH SPÉ PT 09/01/18

ES01

Algèbre

Durée 3h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE 1

Démontrer, en justifiant, que la matrice $A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$ est semblable à la matrice $T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.

On précisera une matrice de passage à **coefficients entiers**, que l'on notera P, et on calculera P^{-1} .

EXERCICE 2

On cherche à calculer

$$I = \inf_{a,b \in \mathbb{R}} \left\{ \int_0^1 \left(e^{-t} - at - b \right)^2 dt \right\}$$

Pour cela, on munit $\mathscr{C}([0;1],\mathbb{R})$ du produit scalaire

$$(f|g) = \int_0^1 f(t)g(t)dt$$

1. Montrer que

$$I = d(\phi, F)^2$$

où $d(\phi, F)$ est la distance de ϕ à F, avec ϕ application de $\mathscr{C}([0; 1], \mathbb{R})$ à préciser et F sous-espace vectoriel de $\mathscr{C}([0; 1], \mathbb{R})$ à préciser également.

- **2.** Déterminer le projeté orthogonal de ϕ sur F.
- **3.** En déduire *I*.

EXERCICE 3

Pour tous entiers strictement positifs n et p, $\mathcal{M}_{n,p}(\mathbb{R})$ désigne l'ensemble des matrices à n lignes et p colonnes à coefficients réels. Pour tout entier $n \geq 1$, on note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels. I_n désigne la matrice identité d'ordre n. Pour une matrice A, on note tA sa matrice transposée et $\mathbf{Tr}(A)$ sa trace.

Partie 1

Dans cette partie, on se fixe un entier $n \ge 1$. Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe deux matrices U, V de $\mathcal{M}_n(\mathbb{R})$ et deux réels λ et μ tels que $\lambda \mu \ne 0$ et $\lambda \ne \mu$ vérifiant :

$$A = \lambda U + \mu V \tag{1}$$

$$A^2 = \lambda^2 U + \mu^2 V \tag{2}$$

$$A^3 = \lambda^3 U + \mu^3 V \tag{3}$$

1. Exprimer U et V en fonction de A et A^2 . En déduire que

$$A^3 = (\lambda + \mu)A^2 - \lambda \mu A$$

2. Montrer que, pour tout entier $p \ge 1$,

$$A^p = \lambda^p U + \mu^p V$$

3. Soit f l'endomorphisme canoniquement associé à A.

Pour $p \in \mathbb{N}$ et $p \ge 2$, on note $f^p = f \circ \cdots \circ f$ la $p^{\text{ème}}$ composée de f.

a) Montrer que

$$\operatorname{Ker}(f) \subset \operatorname{Ker}(f^p)$$

b) Montrer que pour tout $x \in \mathbb{R}^n$,

$$\lambda \mu f^{p-1}(x) = (\lambda + \mu) f^p(x) - f^{p+1}(x)$$

c) En déduire que

$$\operatorname{Ker}(f^p) \subset \operatorname{Ker}(f)$$

d) Montrer que

$$\operatorname{rg}(A) = \operatorname{rg}(A^p)$$

Partie 2

On a toujours un entier $n \ge 1$. Soit U, V les deux matrices colonnes définies par

$$U = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} \quad \text{et} \quad V = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

On suppose U et V non nulles. Soit $a \in \mathbb{R}$ et A la matrice définie par :

$$A = aI_n + U^t V$$

- 1. Montrer que ${}^{t}V$ U est un réel que l'on exprimera en fonction des coefficients u_{i} et v_{i} .
- **2.** Montrer qu'il existe un réel *k* tel que

$$\left(U^{t}V\right)^{2} = k\left(U^{t}V\right)$$

En déduire qu'il existe deux réels α et β tels que

$$A^2 = \alpha A + \beta I_n$$

3. On note $A = (a_{ij})_{1 \le i,j \le n}$. Donner l'expression de a_{ij} en fonction de a et des coefficients de U et V. En déduire que

$$Tr(A) = na + {}^{t}V U$$

- **4.** Exprimer α et β en fonction de a et de Tr(A).
- 5. Soit λ une valeur propre de A. Montrer que λ^2 est une valeur propre de A^2 . En déduire que λ vérifie l'équation

$$\lambda^2 - \alpha \lambda - \beta = 0$$

- **6.** Montrer que les seules valeurs propres possibles de A sont $\lambda_1 = a$ et $\lambda_2 = \text{Tr}(A) (n-1)a$.
- 7. On suppose que $\text{Tr}(U^t V) \neq 0$ et on considère les sous-espaces vectoriels E_1 et E_2 définis par

$$E_i = \{X \in \mathcal{M}_{n,1}(\mathbb{R}), AX = \lambda_i X\}$$

a) Montrer que

$$E_1 \cap E_2 = \{0\}$$

- b) Montrer par analyse-synthèse que, pour tout vecteur colonne X, il existe $X_1 \in E_1$ et $X_2 \in E_2$ tels que $X = X_1 + X_2$.
- c) Montrer que la matrice A est diagonalisable.

ES01 ALGÈBRE - CORRECTION

EXERCICE 1

 $\chi_A = (X-3)(X-2)^2$ est scindé sur $\mathbb R$ donc A est trigonalisable (au moins) sur $\mathbb R$.

On a
$$E_3(A) = \text{Vect}\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
 et $E_2(A) = \text{Vect}\begin{pmatrix} 4\\3\\4 \end{pmatrix}$; ce qui fait que A n'est pas diagonalisable.

On cherche alors $P = \begin{pmatrix} 1 & 4 & a \\ 1 & 3 & b \\ 1 & 4 & c \end{pmatrix}$ telle que AP = PT. Cette dernière égalité nous donne un système

d'inconnue (a, b, c) dont le triplet (-2, 0, -1) est solution.

Donc
$$A = \begin{pmatrix} 1 & 4 & -2 \\ 0 & 6 & -3 \\ -1 & 4 & 0 \end{pmatrix}$$
 est semblable à la matrice $T = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ avec $P = \begin{pmatrix} 1 & 4 & -2 \\ 1 & 3 & 0 \\ 1 & 4 & -1 \end{pmatrix}$ puis

$$P^{-1} = \begin{pmatrix} 3 & 4 & -6 \\ -1 & -1 & 2 \\ -1 & 0 & 1 \end{pmatrix}.$$

EXERCICE 2

1.

Il suffit de poser $\phi: t \mapsto e^{-t} \in \mathscr{C}([0;1],\mathbb{R})$ et F l'ensemble des fonctions affines, sous-espace vectoriel de $\mathscr{C}([0;1],\mathbb{R})$.

2.

On peut orthonormaliser $(t \mapsto 1, t \mapsto t)$, base de F, en (f, g) puis, le projeté orthogonal de ϕ sur F est donné par $p_F(\phi) = (\phi|f)f + (\phi|g)g$.

On a alors
$$f: t \mapsto 1$$
, $g: t \mapsto \sqrt{12} \left(t - \frac{1}{2} \right)$, puis $(\phi|f) = 1 - \frac{1}{e}$, $(\phi|g) = \sqrt{3} \left(1 - \frac{3}{e} \right)$, et enfin $p_F(\phi): t \mapsto \left(6 - \frac{18}{e} \right) t + \frac{8}{e} - 2$.

3.

On en déduit
$$I = d(\phi, F)^2 = \|\phi - p_F(\phi)\|^2 = \|\phi\|^2 - \|p_F(\phi)\|^2$$
. (théorème de Pythagore)
Puis $I = (\phi|\phi) - (\phi|f)^2 - (\phi|g)^2 = \left(\frac{1}{2}\left(1 - \frac{1}{e^2}\right)\right)^2 - \left(1 - \frac{1}{e}\right)^2 - \left(\sqrt{3}\left(1 - \frac{3}{e}\right)\right)^2$, soit encore

$$I = \frac{1 - 114e^2 + 80e^3 - 15e^4}{4e^4}$$

Partie 1

1.

En résolvant le système d'inconnues U et V formé par les deux premières équations, on trouve $V = \frac{\lambda A - A^2}{\mu (\lambda - \mu)}$ et $U = \frac{\mu A - A^2}{\lambda (\mu - \lambda)}$.

On substitue V et U dans la troisième relation et on a bien $A^3 = (\lambda + \mu)A^2 - \lambda \mu A$.

2.

Démonstration par récurrence double.

L'initialisation est donnée par les deux premières relations.

Soit $p \ge 2$. Supposons la propriété vraie aux rangs p-1 et p.

On sait que $A^3 = (\lambda + \mu)A^2 - \lambda \mu A$, donc en multipliant par A^{p-2} , on obtient

 $A^{p+1} = (\lambda + \mu)A^p - \lambda \mu A^{p-1}.$

Puis, $A^{p+1} = (\lambda + \mu)(\lambda^p U + \mu^p V) - \lambda \mu (\lambda^{p-1} U + \mu^{p-1} V) = \lambda^{p+1} U + \mu^{p+1} V$ ce qui établit l'hérédité.

3.

a)

Puisque f est linéaire,

$$x \in \text{Ker}(f) \iff f(x) = 0$$

 $\implies f^{p-1} \circ f(x) = 0$
 $\iff f^p(x) = 0$
 $\iff x \in \text{Ker}(f^p)$

b)

On sait que $A^{p+1} = (\lambda + \mu)A^p - \lambda \mu A^{p-1}$, et que f est canoniquement associé à A donc $f^{p+1} = (\lambda + \mu)f^p - \lambda \mu f^{p-1}$, ce qui donne $\forall x \in \mathbb{R}^n$, $\lambda \mu f^{p-1}(x) = (\lambda + \mu)f^p(x) - f^{p+1}(x)$.

c)

Démonstration par récurrence.

Pour p = 2, la relation précédente donne $\forall x \in \mathbb{R}^n$, $\lambda \mu f(x) = (\lambda + \mu) f^2(x) - f^3(x)$.

Ainsi, si $x \in \text{Ker}(f^2)$, $f^2(x) = 0$ puis $f^3(x) = 0$ et donc, comme $\lambda \mu \neq 0$, f(x) = 0; c'est à dire $x \in \text{Ker}(f)$. On a donc bien $\text{Ker}(f^2) \subset \text{Ker}(f)$.

Soit $p \ge 2$. Supposons $\operatorname{Ker}(f^p) \subset \operatorname{Ker}(f)$.

Soit alors $x \in \text{Ker}(f^{p+1})$ alors $f^{p+1}(x) = 0$ puis $f^{p+2}(x) = 0$, et comme

 $\lambda \mu f^p(x) = (\lambda + \mu) f^{p+1}(x) - f^{p+2}(x)$ et que $\lambda \mu \neq 0$, on a $f^p(x) = 0$ et donc

 $x \in \text{Ker}(f^p) \subset \text{Ker}(f)$. On a donc bien $\text{Ker}(f^{p+1}) \subset \text{Ker}(f)$ et on a l'hérédité.

d)

Des questions précédentes, on sort $Ker(f^p) = Ker(f)$ et ensuite, on en déduit par le théorème du rang que $dim(Im(f^p)) = dim(Im(f))$, c'est à dire $rg(A^p) = rg(A)$.

Partie 2

1.

$$^{t}V\ U=\sum_{i=1}^{n}u_{i}v_{i}\in\mathbb{R}.$$

2.

$$(U^t V)^2 = (U^t V)(U^t V) = U(t^t V)^t V = k(U^t V)$$
 où l'on a posé $k = t^t V U$.

$$(U {}^{t}V)^{2} = k(U {}^{t}V) \iff (A - aI_{n})^{2} = k(A - aI_{n})$$

$$\iff A^{2} + a^{2}I_{n} - 2aA = kA - kaI_{n}$$

$$\iff A^{2} = (2a + k)A - a(a + k)I_{n}$$

On a donc $\alpha = 2a + k$ et $\beta = -a(a + k)$.

3.

On a clairement
$$a_{ij} = \begin{cases} a + u_i v_i & \mathbf{si} \ i = j \\ u_i v_j & \mathbf{si} \ i \neq j \end{cases}$$

$$\mathbf{Tr}(A) = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} (a + u_i v_i) = \sum_{i=1}^{n} a + \sum_{i=1}^{n} u_i v_i = na + {}^{t}V \ U.$$

4.

On a alors
$$\alpha = 2a + k = 2a + \text{Tr}(A) - na = (2 - n)a + \text{Tr}(A)$$

et $\beta = -a(a + \text{Tr}(A) - na) = (n - 1)a^2 - a\text{Tr}(A)$.

5.

 λ valeur propre de A donc $\exists X \in \mathbb{R}^n \setminus \{0\}$, $AX = \lambda X$. Ainsi $A^2X = A(AX) = A(\lambda X) = \lambda(AX) = \lambda^2 X$ et, comme $X \neq 0$, λ^2 est valeur propre de A^2 .

Soit X un vecteur propre associé à la valeur propre λ . On a $A^2 = \alpha A + \beta I_n$ donc $A^2X = \alpha AX + \beta I_nX$, c'est à dire $\lambda^2X = \alpha\lambda X + \beta X$, ou encore $(\lambda^2 - \alpha\lambda - \beta)X = 0$; on conclut que $\lambda^2 - \alpha\lambda - \beta = 0$, puisque $X \neq 0$.

6.

On cherche λ_1 et λ_2 tels que $\begin{cases} \lambda_1 + \lambda_2 &= \alpha = (2-n)a + \mathbf{Tr}(A) \\ \lambda_1 \lambda_2 &= -\beta = -(n-1)a^2 + a\mathbf{Tr}(A) \end{cases}$ et clairement $\lambda_1 = a \text{ et } \lambda_2 = \mathbf{Tr}(A) - (n-1)a \text{ conviennent et sont les seules possibles.}$

7.

a)

 E_1 et E_2 sont les sous-espaces propres de A associés aux valeurs propres λ_1 et λ_2 . Ils sont en somme directe si $\lambda_1 \neq \lambda_2$.

$$\lambda_1 = \lambda_2 \Longleftrightarrow \mathbf{Tr}(A) - na = 0$$
$$\iff {}^t V \ U = 0$$

ce qui est impossible puisque tV $U=\operatorname{Tr}\left({}^tV$ $U\right)=\operatorname{Tr}\left(U$ ${}^tV\right)\neq 0$. On conclut que $E_1\cap E_2=\{0\}$.

b)

On cherche
$$X_1$$
 et X_2 tels que
$$\begin{cases} X = X_1 + X_2 \\ AX_1 = \lambda_1 X_1 \\ AX_2 = \lambda_2 X_2 \end{cases}$$

On cherche X_1 et X_2 tels que $\begin{cases} X = X_1 + X_2 \\ AX_1 = \lambda_1 X_1 \\ AX_2 = \lambda_2 X_2 \end{cases}$ On obtient $\begin{cases} X = X_1 + X_2 \\ AX = \lambda_1 X_1 + \lambda_2 X_2 \end{cases}$ puis $\begin{cases} X_1 = \frac{\lambda_2 X - AX}{\lambda_2 - \lambda_1} \\ X_2 = \frac{\lambda_1 X - AX}{\lambda_1 - \lambda_2} \end{cases}$. Ce qui achève l'analyse.

Enfin, on vérifie que ces deux valeurs répondent à la question et donne la synthèse.

c)

Les deux questions précédentes nous permettent de conclure que $\mathcal{M}_{n,1}(\mathbb{R})=E_1\oplus E_2$ qui est une condition nécessaire et suffisante de diagonalisabilité de A.