- CC1-S1 -

- 2018-2019

- Correction - Algèbre -

Exercice 1

Dans \mathbb{R}^3 muni de sa base canonique (e_1, e_2, e_3) , on considère l'endomorphisme u défini par :

$$u(x, y, z) = (-x, 2x + y, -2x - 2y - z)$$

Soient $\varepsilon_1, \varepsilon_2$ et ε_3 les vecteurs définis par :

$$\varepsilon_1 = e_2 - e_3, \ \varepsilon_2 = -e_1 + e_2 - e_3, \ \varepsilon_3 = e_1 - e_2 + 2e_3$$

- 1. Montrer que $\mathscr{B} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de \mathbb{R}^3 . $\det(\mathscr{B}) \neq 0$ donc \mathscr{B} est une base de \mathbb{R}^3 .
- **2.** Déterminer la matrice de u dans \mathscr{B} .

$$u(\varepsilon_1) = \varepsilon_1, u(\varepsilon_2) = -\varepsilon_2, u(\varepsilon_3) = -\varepsilon_3 \text{ on en déduit : } \max_{\mathscr{B}}(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

3. Que peut-on en déduire?

u est la symétrie par rapport à $\text{Vect}\{\varepsilon_1\}$ parallèlement à $\text{Vect}\{\varepsilon_2,\varepsilon_3\}$.

Exercice 2

On considère deux entiers n et p tels que $2 \le p \le n$. E désigne un espace vectoriel de dimension n sur \mathbb{K} . $f_1, f_2, ..., f_p$ sont p endomorphismes non nuls de E tels que

$$f_1 + f_2 + \dots + f_p = \operatorname{Id}_E$$
 et $f_i \circ f_j = 0$, pour tout $i \neq j$

Soient $\alpha_1, \alpha_2, \cdots, \alpha_p$ des éléments de \mathbb{K} deux à deux distincts. On note $f = \alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_p f_p$.

1. Montrer que pour tout $i \in [1, p], f_i$ est un projecteur de E.

Soit
$$i \in [1, p]$$
. $f_i \in \mathcal{L}(E)$ et $f_i = f_i \circ \mathrm{Id}_E = f_i \circ \sum_{k=1}^p f_k = \sum_{k=1}^p f_i \circ f_k = f_i \circ f_i$ (car si $i \neq k, f_i \circ f_k = 0$).

On en déduit que f_i est un projecteur.

2. Calculer $f^k = \underbrace{f \circ \cdots \circ f}_{k \text{ fois}}$, pour tout $k \in \mathbb{N}^*$.

Montrons par récurrence que $\forall k \in \mathbb{N}^*, f^k = \sum_{i=1}^p \alpha_i^k f_i$:

Pour k = 1 c'est la définition de f.

On suppose que le résultat est vrai pour $k \in \mathbb{N}^*$. On a :

$$f^{k+1} = f^k \circ f = \left(\sum_{i=1}^p \alpha_i^k f_i\right) \circ \left(\sum_{j=1}^p \alpha_j f_j\right) = \sum_{i=1}^p \sum_{j=1}^p \alpha_i^k \alpha_j f_i \circ f_j = \sum_{i=1}^p \alpha_i^{k+1} f_i \circ f_i = \sum_{i=1}^p \alpha_i^{k+1} f_i,$$

car si $i \neq k$, $f_i \circ f_k = 0$, et $\forall i \in [1, p]$, $f_i \circ f_i = f_i$. Le résultat est donc vrai pour k + 1.

3. Montrer que $\{f_1, f_2, \cdots, f_p\}$ est une famille libre.

Soit
$$(\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p$$
 tel que $\sum_{k=1}^p \lambda_k f_k = 0$.

Pour
$$i \in [1, p]$$
, on a : $f_i \circ \sum_{k=1}^p \lambda_k f_k = \sum_{k=1}^p \lambda_k f_i \circ f_k = \lambda_i f_i \circ f_i = \lambda_i f_i = 0$, avec $f_i \neq 0$ donc $\lambda_i = 0$.

 $\operatorname{Sp\'{e}}\operatorname{PT}$ Page 1 sur 2

4. Montrer que

$$E = \operatorname{Im} f_1 \oplus \operatorname{Im} f_2 \oplus \cdots \oplus \operatorname{Im} f_p$$

$$\forall x \in E, x = \sum_{k=1}^{p} f_k(x) \text{ donc } E = \sum_{k=1}^{p} \text{Im}(f_k).$$

Montrons que la somme est directe, en montrant l'unicité de la décomposition de 0_E :

Soit
$$(x_1, \dots, x_p) \in \operatorname{Im}(f_1) \times \dots \times \operatorname{Im}(f_p)$$
 tel que $\sum_{k=1}^p x_k = 0$

$$\forall k \in [1, p], x_k \in \operatorname{Im}(f_k) \text{ donc } \exists a_k \in E, x_k = f_k(a_k).$$

Soit
$$(x_1, \dots, x_p) \in \text{Im}(f_1) \times \dots \times \text{Im}(f_p)$$
 tel que $\sum_{k=1}^p x_k = 0$.

$$\forall k \in [1, p[, x_k \in \text{Im}(f_k) \text{ donc } \exists a_k \in E, x_k = f_k(a_k).$$
On a: $\sum_{k=1}^p f_k(a_k) = 0$, donc $\forall i \in [1, p[, f_i]) = \sum_{k=1}^p f_k(a_k) = f_i \circ f_i(a_i) = f_i(a_i) = 0$,

5. Montrer que la famille $\{ \mathrm{Id}_E, f, f^2, \cdots, f^{p-1} \}$ est libre.

Soit
$$(\lambda_1, \dots, \lambda_p) \in \mathbb{R}^p$$
 tel que $\sum_{k=0}^{p-1} \lambda_k f^k = 0$.

D'après la question 2, on a :
$$0 = \sum_{k=0}^{p-1} \left(\lambda_k \sum_{i=1}^p \alpha_i^k f_i \right) = \sum_{i=1}^p \left(\sum_{k=0}^{p-1} \lambda_k \alpha_i^k \right) f_i$$
.

Comme la famille
$$\{f_1, \dots, f_p\}$$
 est libre, on en déduit que $\forall i \in [1, p], \sum_{k=0}^{p-1} \lambda_k \alpha_i^k = 0$.

Considérons le polynôme $\sum_{k=0}^{p-1} \lambda_k X^k$; il est de degré p-1 et admet au moins p racines (les α_i), il est donc nul, c'est-à-dire $\forall k \in [0, p-1], \lambda_k = 0$. La famille $\{ \mathrm{Id}_E, f, f^2, \cdots, f^{p-1} \}$ est donc libre.

6. Pour $P = \sum_{k=0}^{a} a_k X^k \in \mathbb{K}[X]$, on définit l'endomorphisme P(f) par $P(f) = \sum_{k=0}^{a} a_k f^k$.

Pour tout
$$i \in [1, p]$$
, on note $P_i = \prod_{\substack{1 \le k \le p \\ k \ne i}} \frac{X - \alpha_k}{\alpha_i - \alpha_k}$.

Montrer que pour tout $i \in [1, p]$, P_i est le seul polynôme de $\mathbb{K}_{p-1}[X]$ vérifiant $P_i(f) = f_i$.

Soit
$$i \in [1, p]$$
. On note $P_i = \sum_{k=0}^{p-1} c_{i,k} X^k$.

On a:
$$P_i(f) = \sum_{k=0}^{p-1} c_{i,k} \left(\sum_{j=1}^p \alpha_j^k f_j \right) = \sum_{j=1}^p \left(\sum_{k=0}^{p-1} c_{i,k} \alpha_j^k \right) f_j = \sum_{j=1}^p P_i(\alpha_j) f_j.$$

Or, par définition de P_i on a : $P_i(\alpha_i) = 1$, et si $i \neq i$, $P_i(\alpha_i) = 0$, d'où, $P_i(f) = f_i$.

Montrons l'unicité :

Soit $i \in [1, p]$, on suppose que le polynôme $Q_i \in \mathbb{K}_{p-1}[X]$ vérifie $Q_i(f) = f_i$.

On considère le polynôme $\Delta_i = P_i - Q_i$. C'est un polynôme de degré au plus p-1, vérifiant $\Delta_i(f) = 0$.

Or la famille $\{\mathrm{Id}_E, f, f^2, \cdots, f^{p-1}\}$ est libre, donc $\Delta_i = 0$ ce qui montre l'unicité.

Spé PT Page 2 sur 2