Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE I

On considère la suite (I_n) définie sur $\mathbb N$ par

$$I_n = \int_1^e (\ln(x))^n dx$$

1. Montrer que

$$\forall n \in \mathbb{N}^*, \quad I_n = e - nI_{n-1}$$

2. Montrer que

$$\forall n \in \mathbb{N}^*, \quad 0 \le I_n \le \frac{\mathrm{e}}{n+1} \le I_{n-1}$$

3. En déduire que

$$I_n \underset{n \to +\infty}{\sim} \frac{\mathrm{e}}{n}$$

EXERCICE II

Dans tout l'exercice n désigne un entier naturel non nul. On note

$$P_n = nX^{n+1} - (n+1)X^n$$

- 1. Donner le quotient et le reste de la division euclidienne de P_n par X-1.
- **2.** On note $Q_n = nX^n \sum_{k=0}^{n-1} X^k$
 - **a.** Montrer que Q_n est divisible par X-1.
 - **b.** Expliciter le quotient de $X^{n+1} 1$ par X 1.
 - c. En calculant de deux façons différentes le polynôme dérivé de $X^{n+1} 1$, déterminer la factorisation de Q_n par X 1.
 - **d.** En déduire le quotient et le reste de la division euclidienne de P_n par $(X-1)^2$.
- **3.** A l'aide de la formule de Taylor pour les polynômes, écrire le polynôme P_n dans la base $(1, X 1, \dots, (X 1)^{n+1})$ de $\mathbb{R}_{n+1}[X]$.

EXERCICE III

Dans \mathbb{R}^4 , on considère les ensembles suivants :

$$E = \text{Vect}\{(1, -1, 2, 0), (0, 1, -2, 1), (2, 1, -2, 3)\}$$

$$F = \{(x, y, z, t) \in \mathbb{R}^4, 2x - y + z + t = 0 \text{ et } -x + 2y + t = 0\}.$$

- 1. Montrer que F est un sous-espace vectoriel de \mathbb{R}^4 , et en déterminer une base.
- **2.** E et F sont-ils supplémentaires?

EXERCICE IV

On se place dans le \mathbb{R} -espace vectoriel des fonctions <u>définies sur</u> \mathbb{Z} à valeurs dans \mathbb{R} . a_1 et a_2 désignent des réels non nuls.

Soit F l'ensemble des éléments f de E vérifiant la condition :

$$\forall n \in \mathbb{Z}, \qquad f(n) + a_1 f(n-1) + a_2 f(n-2) = 0$$

- 1. Montrer que F est un sous-espace vectoriel de E.
- ${f 2.}\,$ Si a et b désignent deux réels quelconques, montrer qu'il existe un unique élément f de F tel que :

$$f(1) = a$$
 et $f(2) = b$

3. Soient φ_1 la fonction de F telle que

$$\varphi_1(1) = 1 \quad \text{ et } \quad \varphi_1(2) = 0,$$

et φ_2 la fonction de F telle que

$$\varphi_2(1) = 0$$
 et $\varphi_2(2) = 1$.

Montrer que la famille (φ_1, φ_2) est une base de F.

4. Trouver une condition nécessaire et suffisante sur $\alpha \in \mathbb{R}^*$ pour que la fonction f définie pour $n \in \mathbb{Z}$ par :

$$f(n) = \alpha^n$$

soit dans F.

- 5. On suppose que $a_1^2 > 4a_2$
 - a. Montrer que si α et β sont des réels distincts, les fonctions f et g définies pour $n \in \mathbb{Z}$ par

$$f(n) = \alpha^n$$
 et $g(n) = \beta^n$

sont linéairement indépendantes.

- **b.** En déduire une autre base de F.
- **6.** On suppose que $a_1^2 = 4a_2$
 - **a.** Montrer que pour $\gamma = -\frac{a_1}{2}$, la fonction h définie pour $n \in \mathbb{Z}$ par $h(n) = n\gamma^n$ est dans F.
 - **b.** Trouver une autre base de F.

Fin de l'énoncé