Soit $E = \mathbb{R}^3$ le \mathbb{R} -espace vectoriel muni de sa base canonique $\mathcal{E} = (e_1; e_2; e_3)$.

On définit l'endomorphisme f de E par : f(x; y; z) = (-x + 3y - z; -x + 3y - z; x - y + z)

1. Déterminer la matrice de f dans la base \mathcal{Z} .

2. Déterminer une base de Ker(f) et une base de Im(f).

3. Soit $\mathcal{E}' = (e'_1; e'_2; e'_3)$ avec $e'_1 = e_1 + e_2$, $e'_2 = -e_1 + e_3$ et $e'_3 = e_1 + e_2 + e_3$. Montrer que \mathcal{E}' est une base de E.

4. Déterminer la matrice de f dans la base \mathcal{Z} .

Soit $E = \mathbb{R}^3$ le \mathbb{R} -espace vectoriel muni de sa base canonique $\boldsymbol{\mathcal{E}} = (e_1\,;\,e_2\,;\,e_3).$

On définit l'endomorphisme f de E par : f(x; y; z) = (-2x + 5y - 3z; -3x + 6y - 3z; -x + y).

1. Déterminer la matrice de f dans la base \mathcal{Z} .

2. Déterminer une base de Ker(f) et une base de Im(f).

3. Soit $\mathcal{E}' = (e'_1; e'_2; e'_3)$ avec $e'_1 = e_1 + e_2$, $e'_2 = -e_1 + e_3$ et $e'_3 = e_1 + e_2 + e_3$. Montrer que \mathcal{E}' est une base de E.

4. Déterminer la matrice de f dans la base \mathcal{Z} .