- $I) \ \ \text{Soient } n \in \ \mathbb{N} \ , \ f \colon \ \mathbb{R} \ \to \ \mathbb{R} \ \ \text{et } \phi_n \ \text{d\'efinie sur } \ \mathbb{R} \ \ \text{par } \ \phi_n(x) = \sum_{p=0}^n f\left(\frac{p}{n}\right) \binom{n}{p} x^p (1-x)^{n-p}.$
 - 1) Dans cette question on considère $f: x \mapsto 1$. Simplifier au maximum l'écriture de $\varphi_n(x)$.
 - 2) Dans cette question on considère $f: x \mapsto x$.

a)
$$1 \le p \le n$$
, exprimer $p \binom{n}{p}$ en fonction de $\binom{n-1}{p-1}$

- b) Simplifier au maximum l'écriture de $\varphi_n(x)$.
- 3) Dans cette question on considère $f: x \mapsto e^x$.
 - a) Simplifier au maximum l'écriture de $\varphi_n(x)$.
 - b) Déterminer la limite de φ_n quand $n \to + \infty$
- II) Soient $n \in \mathbb{N} * et A_n = nX^{n+1} (n+1)X^n$
 - 1°) Déterminer le quotient et le reste dans la division euclidienne de A_n par (X 1).
 - 2°) Soit $S_n = nX^n X^{n-1} \dots X 1$.
 - a) Montrer que S_n est divisible par (X-1).
 - b) Déterminer le quotient de $X^{n+1}-1$ par (X-1).
 - c) En calculant de deux façons différentes le polynôme dérivé de $X^{n+1}-1$, déterminer le quotient dans la division euclidienne de S_n par (X-1).
 - 3°) Déterminer le quotient et le reste dans la division euclidienne de A_n par $(X-1)^2$.
- III) Soit g la fonction de \mathbb{R} vers \mathbb{R} définie par : $g(x) = \frac{chx 1}{x}$.
 - 1°) Montrer que g admet un prolongement par continuité en 0 que l'on notera h.
 - 2°) La fonction h est-elle de classe \mathbb{C}^1 sur \mathbb{R} ?
 - 3°) Déterminer une équation de la tangente à C_h (courbe représentative de h) en 0 ainsi que sa position par rapport à C_h .

Barème : I = 7 points , II = 8 points , III = 5 points.