On munit le plan d'un repère orthonormé direct.

I)

- 1°) Vérifier que pour tout réel x, en posant u=cosx+i sinx , on a : $u^4+u^3+u^2+u+1=u^2\left((2cosx)^2+2cosx-1\right)$
- **2°) a)** Montrer que $\cos(2\pi/5)$ et $\cos(4\pi/5)$ sont les solutions de l'équation : $4X^2 + 2X 1 = 0$.
 - **b**) En déduire les valeurs de $\cos(2\pi/5)$ et $\cos(4\pi/5)$.
- 3°) Déterminer les points d'intersection du cercle C d'équation : $X^2 + Y^2 + \frac{1}{2}X \frac{1}{4} = 0$ avec l'axe des abscisses.
- **4°**) En déduire une construction du pentagone régulier de sommets $M_0(1),\ M_1(\omega),\ M_2(\omega^2),\ M_3(\omega^3),\ M_4(\omega^4)$ avec $\omega=e^{2i\,\pi/5}$

II)

Etudier et tracer la courbe paramétrée d'équation : $\begin{cases} & x\left(t\right) = e^{t-1} - t \\ & y\left(t\right) = t^3 - 3t \end{cases}$

.____

III) Soit T l'ensemble des points M(x; y) tels que $\begin{cases} x = 3\cos t - 2 \\ y = 2\sin t + 5 \end{cases}$ où t décrit \mathbb{R} . Déterminer une équation cartésienne de T et la tracer.

.____

IV) Tracer la courbe d'équation polaire : $\rho = -2 + 5\cos\theta$

Barème : I = 7 points , II = 6 points , III = 3 points , IV = 5 points .
