EXERCICE I

L'objectif du problème est le calcul approché d'une racine carrée d'un nombre réel A. Pour cela, on considère deux suites (x_n) et (y_n) , telles que :

$$\begin{cases} x_0 = y_0 = 1 \\ x_{n+1} = x_n + y_n, \ \forall n \in \mathbb{N} \\ y_{n+1} = y_n + Ax_n, \ \forall n \in \mathbb{N} \end{cases}$$

Première partie : Calcul approché de \sqrt{A} , avec A > 0.

- **1.** Montrer que les suites (x_n) et (y_n) sont strictement positives et strictement croissantes.
- **2.** Montrer que les suites (x_n) et (y_n) sont divergentes.
- **3.** Pour tout $n \in \mathbb{N}$, on pose : $r_n = \frac{y_n}{x_n}$.
- **a)** Montrer que pour tout $n \in \mathbb{N}$, $r_{n+1} = \frac{r_n + A}{r_n + 1}$.
- **b)** Etudier, en fonction de A, les variations de la fonction f définie sur \mathbb{R}^+ par : $f(x) = \frac{x+A}{x+1}$.
- **4.** On suppose que 0 < A < 1.

Montrer que la suite (r_n) converge et déterminer sa limite.

- **5.** On suppose que A > 1. Pour tout $n \in \mathbb{N}$, on pose : $u_n = r_{2n}$ et $v_n = r_{2n+1}$.
- **a)** Montrer que pour tout $n \in \mathbb{N}$, $u_n \le \sqrt{A} \le v_n$.
- **b)** Montrer que les suites (u_n) et (v_n) sont adjacentes.
- c) En déduire que la suite (r_n) converge et déterminer sa limite.

Deuxième partie : Majoration de l'erreur

- **1.** Montrer que pour tout $n \ge 2$, $x_n > (1+A)x_{n-2}$; en déduire que pour tout $n \ge 1$: $x_{2n} > (1+A)^n$.
- **2.** Vérifier que pour tout $n \in \mathbb{N}$, $y_{n+1}^2 Ax_{n+1}^2 = (1 A)(y_n^2 Ax_n^2)$;

en déduire que pour tout $n \in \mathbb{N}$: $y_n^2 - Ax_n^2 = (1 - A)^{n+1}$

3. On suppose que A > 1.

Montrer que pour tout $n \in \mathbb{N}$, $\left| u_n - \sqrt{A} \right| < \frac{\left(A - 1 \right)^{2n+1}}{2x_{2n}^2}$; en déduire que $\left| u_n - \sqrt{A} \right| < \frac{A - 1}{2} \left(\frac{A - 1}{1 + A} \right)^{2n}$.

4. On suppose que 0 < A < 1.

Montrer que pour tout $n \in \mathbb{N}$, $\left| u_n - \sqrt{A} \right| < \frac{\left(1 - A \right)^{2n+1}}{2Ax_{2n}^2}$; en déduire que $\left| u_n - \sqrt{A} \right| < \frac{1 - A}{2A} \left(\frac{1 - A}{1 + A} \right)^{2n}$.

T.S.V.P.

EXERCICE II

On considère l'équation différentielle suivante :

$$y'' - 2y' - 3y = \frac{e^{3x}}{ch^2(x)}$$
 (E)

1. Donner les solutions de l'équation différentielle homogène :

$$y'' - 2y' - 3y = 0$$
 (H)

2. Montrer que y est solution de (E) si et seulement si la fonction z définie sur \mathbb{R} par $z(x) = e^{-3x}y(x)$ est solution de l'équation différentielle :

$$z'' + 4z' = \frac{1}{\cosh^2(x)} (L_1)$$

3. Montrer que pour que z soit solution de (L₁) il suffit que z soit solution de l'équation différentielle :

$$z' + 4z = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} (L_2)$$

4. Déterminer les réels a, b et c tels que pour tout réel x :

$$e^{4x} \frac{e^{2x} - 1}{e^{2x} + 1} = e^{2x} \left(ae^{2x} + b + \frac{c}{1 + e^{2x}} \right)$$

- **5.** Résoudre (L₂).
- **6.** Donner l'ensemble des solutions de (E).

Barème envisagé: 12 points - 8 points