D.M. n°1

ETUDE DE SUITES

CORRECTION

On considère la fonction g définie sur \mathbb{R} par $g(x) = e^x - x$.

1. Montrer que pour tout entier $n \ge 2$, l'équation g(x) = n admet exactement deux solutions, l'une strictement négative notée a_n , l'autre strictement positive notée b_n .

Les limites des fonctions usuelles donnent : $\lim_{x \to -\infty} g(x) = +\infty$.

Les croissances comparées donnent : $\lim_{x \to +\infty} g(x) = +\infty$

g est dérivable sur son domaine (comme somme de fonctions dérivables) pour tout réel x; $g'(x) = e^x - 1$. On en déduit le tableau de variations suivant :

X	$-\infty$	0	$+\infty$
g	+∞	1	$\rightarrow +\infty$

Le théorème des valeurs intermédiaires appliqué à la fonction continue g donne le résultat attendu.

2. Recherche d'une valeur approchée de a_2 :

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = -1 \\ \forall n \in \mathbb{N}, u_{n+1} = e^{u_n} - 2 \end{cases}$$

Dans la suite, on notera h la fonction définie sur \mathbb{R} par $h(x) = e^x - 2$.

Pour tout entier naturel n, on a : $u_{n+1} = h(u_n)$.

On remarque d'ores et déjà que la fonction h est strictement croissante sur $\mathbb R$.

a) Montrer que $-2 < a_2 < -1$

$$g(-2) > 2 > g(-1)$$

b) Vérifier que $e^{a_2} - 2 = a_2$.

Par définition, a_2 vérifie $g(a_2) = 2$ ce qui équivaut à $e^{a_2} - a_2 = 2$ et donc $e^{a_2} - 2 = a_2$ qui équivaut à $h(a_2) = a_2$.

En déduire que :

$$\forall n \in \mathbb{N}, a_2 \leq u_n \leq -1$$

Soit, pour tout entier *n*, la propriété : P_n : $a_2 \le u_n \le -1$.

D'après la question a), la propriété est vraie pour n = 0.

Supposons la propriété vraie pour un entier n. On a donc : $a_2 \le u_n \le -1$.

En appliquant la fonction h, strictement croissante, on obtient : $a_2 \le u_{n+1} \le e^{-1} - 2 < -1$.

Ainsi, la propriété est vraie pour n + 1.

Par principe de récurrence, on en déduit que la propriété P_n est vraie pour tout entier n.

c) Montrer que:

$$\forall x \in [a_2; -1], \ 0 \le e^x - e^{a_2} \le \frac{1}{e}(x - a_2)$$

On a:
$$x \in [a_2; -1] \Rightarrow e^x \ge e^{a_2} d$$
'où $\forall x \in [a_2; -1], 0 \le e^x - e^{a_2}$

La fonction f définie sur \mathbb{R} par $f(x) = e^x - e^{-1}x$ est dérivable sur son domaine comme somme de fonctions dérivables, et pour tout réel $x : f'(x) = e^x - e^{-1}$.

Elle est donc strictement décroissante sur $[a_2;-1]$. On a donc : $e^{a_2} - \frac{1}{e}a_2 \ge e^x - \frac{1}{e}x$ d'où

$$\forall x \in [a_2; -1], e^x - e^{a_2} \le \frac{1}{e}(x - a_2)$$

(Nous verrons plus tard dans l'année que ce résultat est une application directe d'un théorème sur la dérivation, appelé inégalité des accroissements finis...)

d) En déduire que :

$$\forall n \in \mathbb{N}, \ 0 \le u_{n+1} - a_2 \le \frac{1}{e} (u_n - a_2),$$

La question b) donne : $\forall n \in \mathbb{N}$, $u_{n+1} - a_2 = e^{u_n} - 2 - a_2 = e^{u_n} - e^{a_2}$ et $\forall n \in \mathbb{N}$, $a_2 \le u_n \le -1$. La question c) donne le résultat attendu.

Puis
$$\forall n \in \mathbb{N}, \ 0 \le u_n - a_2 \le \left(\frac{1}{e}\right)^n$$

Soit, pour tout entier n, la propriété : H_n : $0 \le u_n - a_2 \le \left(\frac{1}{e}\right)^n$.

D'après la question a), la propriété est vraie pour n = 0.

Supposons la propriété vraie pour un entier n. On a donc : $0 \le u_n - a_2 \le \left(\frac{1}{e}\right)^n$.

D'où, en utilisant le résultat précédent :
$$0 \le u_{n+1} - a_2 \le \frac{1}{e} (u_n - a_2) \le \left(\frac{1}{e}\right)^{n+1}$$

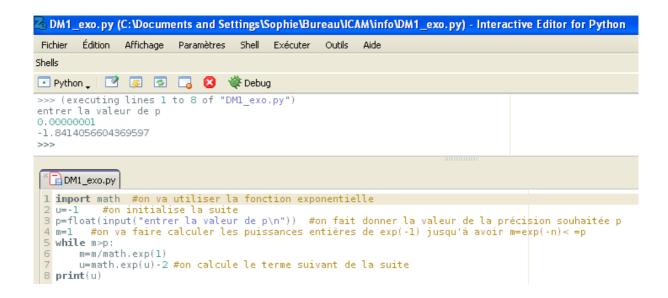
Ainsi, la propriété est vraie pour n + 1.

Par principe de récurrence, on en déduit que la propriété H_n est vraie pour tout entier n.

e) Ecrire un algorithme permettant d'obtenir une valeur de a_2 par excès à ε près, ε étant un réel strictement positif donné.

Le principe consiste à calculer les termes de la suite (u_n) jusqu'à avoir $0 \le u_n - a_2 \le \left(\frac{1}{e}\right)^n \le \varepsilon$. u_n est bien une valeur approchée de a_2 par excès $\left(a_2 \le u_n\right)$ à ε près.

Dans l'algorithme suivant, écrit en langage Python, on note p la valeur de ϵ (pour éviter les caractères spéciaux !).



3. Etude de la suite (b_n)

a) Montrer que:

$$\forall n \in \mathbb{N}, n \ge 2, \ln n \le b_n \le \ln(2n).$$

 $\forall n \in \mathbb{N}, n \ge 2$ $g(\ln(n)) = n - \ln(n) \le n$, donc $\ln(n) \le b_n$. $g(\ln(2n)) = 2n - \ln(2n)$.

Une rapide étude de la fonction t définie sur \mathbb{R}_+^* par $t(x) = x - \ln(2x)$ montre qu'elle est positive et donc que : $\forall n \in \mathbb{N}, n \ge 2$, $0 \le t(n)$, et donc $n \le g(\ln(2n))$ et par suite $b_n \le \ln(2n)$.

b) En déduire la limite de (b_n) et de $\left(\frac{b_n}{\ln n}\right)$

 $\forall n \in \mathbb{N}, n \geq 2, \ \ln n \leq b_n$, donc le théorème de comparaison donne : $\lim_{n \to +\infty} b_n = +\infty$.

De plus,
$$\forall n \in \mathbb{N}, n \ge 2$$
, $\left(\ln n \le b_n \le \ln \left(2n\right)\right) \Leftrightarrow \left(1 \le \frac{b_n}{\ln n} \le 1 + \frac{\ln 2}{\ln n}\right)$.

Le théorème d'encadrement donne : $\lim_{n\to+\infty} \frac{b_n}{\ln n} = 1$