Etant donnée une suite $(a_n)_{n\in\mathbb{N}^*}$, on définit la suite $(c_n)_{n\in\mathbb{N}^*}$ par :

$$\forall n \geq 1, \ c_n = \frac{1}{n} \sum_{k=1}^n a_k \ ,$$

appelée somme de Cesaro.

I. Théorème de Cesaro :

Montrer que si $(a_n)_{n\in\mathbb{N}^*}$ admet une limite L dans $\overline{\mathbb{R}}$, alors $(c_n)_{n\in\mathbb{N}^*}$ admet la même limite L.

II. Applications

1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par :

$$u_0 > 0$$
 et $u_{n+1} = \sqrt{\sum_{k=0}^{n} u_k}$

a) Déterminer la fonction f telle que :

$$\forall n \in \mathbb{N}^*, u_{n+1} = f(u_n)$$

- b) Etudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$.
- c) En appliquant le théorème de Cesaro à la suite de terme général $a_n = u_{n+1} u_n$, déterminer la limite de $\frac{u_n}{n}$.
- 2. Soit $\left(v_n\right)_{n\in\mathbb{N}}$ la suite réelle définie par :

$$v_0 = 1$$
 et $v_{n+1} = v_n \frac{1 + 2v_n}{1 + 3v_n}$

- a) Etudier la convergence de la suite $(v_n)_{n\in\mathbb{N}}$.
- b) Après avoir justifié que la suite $(v_n)_{n\in\mathbb{N}}$ ne s'annule pas, appliquer le théorème de Cesaro à la suite de terme général $a_n=\frac{1}{v_{n+1}}-\frac{1}{v_n}$ pour déterminer la limite de $(n\,v_n)$.