Soient a et b des réels tels que : $0 \le a < b \le 1$.

1. Soit
$$M = \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

- a) Montrer qu'il existe deux suites réelles $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que : $\forall n\in\mathbb{N}, \mathbf{M}^n=a_n\mathbf{M}+\mathbf{b}_nI_2$.
- **b)** Déterminer a_n et b_n .
- **2.** On considère les suites définies par : $(u_0, v_0) \in \mathbb{R}^2$, $\forall n \in \mathbb{N}$, $\begin{cases} u_{n+1} = au_n + (1-a)v_n \\ v_{n+1} = (1-b)u_n + bv_n \end{cases}$.
- a) Donner la forme explicite de u_n et v_n .
- **b)** Etudier la convergence des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.