D.M. n°11

POLYNÔMES

Soient $n \in \mathbb{N}$ * et P_n le polynôme défini par : $P_n = \frac{1}{2i} [(X + iX^0)^{2n+1} - (X - iX^0)^{2n+1}]$

- 1) a) Déterminer les racines du polynôme $(X^{2n+1} X^0) \in \mathbb{C}[X]$.
 - **b**) En déduire que les racines de P_n sont les nombres :

$$\xi_k = \operatorname{cotan}\left(\frac{k\pi}{2n+1}\right) \text{ où } k \in \llbracket -n; n \rrbracket \setminus \{0\}$$

(où cotan
$$x = \frac{\cos(x)}{\sin(x)}$$
 pour $x \in \bigcup_{p \in \mathbb{Z}}]p\pi; (p+1)\pi[$)

- 2) Montrer que $P_n = \sum_{k=0}^{n} {2n+1 \choose 2k+1} (-1)^k X^{2(n-k)}$.
- **3**) Donner la factorisation dans $\mathbb{R}[X]$ du polynôme $Q_n \in \mathbb{R}[X]$ tel que $P_n(X) = Q_n(X^2)$.
- **4) a)** Calculer la somme S_n définie par $S_n = \sum_{k=1}^n \cot^2 \left(\frac{k\pi}{2n+1} \right)$
 - **b**) Soit $\theta \in \left]0; \frac{\pi}{2}\right[$, exprimer $\frac{1}{\sin^2 \theta}$ en fonction de cotan θ .
 - c) Calculer la somme T_n définie par $T_n = \sum_{k=1}^n \frac{1}{\sin^2\left(\frac{k\pi}{2n+1}\right)}$.
- **5**) Prouver les inégalités suivantes : $\forall x \in \left[0; \frac{\pi}{2}\right[, \cot^2(x) \le \frac{1}{x^2} \le \frac{1}{\sin^2 x}\right]$
- **6**) Déduire de ce qui précède que la suite $\left(\sum_{k=1}^{n} \frac{1}{k^2}\right)_{n \in \mathbb{N}^*}$ est convergente et calculer sa limite.