D.M.

FONCTION EXPONENTIELLE

Correction

1ère PARTIE

- **1-a**) φ_a est dérivable sur IR car f l'est. Pour tout réel $x : \varphi_a'(x) = f'(x+a) f'(x)$ f(a).
- **b**) f vérifiant (1), la fonction φ_a est identiquement nulle, donc pour tous les réels a et x: f '(x + a) = f '(x) f(a). En particulier, pour x = 0, f '(a) = f '(0) f(a).
 - c) f vérifiant (1), $f(0) = f(0)^2$ donc soit f(0) = 0, soit f(0) = 1.

Si f(0) = 0, alors pour tout réel $x : f(x) = f(x) \times f(0) = 0$, et la fonction f est identiquement nulle.

Donc, si f n'est pas la fonction nulle, f(0) = 1.

2- a) Considérons la fonction g définie sur \mathbb{R} par g(x) = f(x) f(-x).

g est dérivable sur IR car f l'est, et pour tout réel x : g'(x) = f'(x) f(-x) - f(x)f'(-x) = kf(x)f(-x) - kf(x)f(-x) = 0. La fonction g est donc constante et pour tout réel x : $g(x) = g(0) = f(0)^2 = 1$.

S'il existait un réel a tel que f(a) = 0, on aurait f(a) $f(-a) = 0 \ne 1$. On en déduit que la fonction f ne s'annule pas.

b) ψ_a est dérivable sur \mathbb{R} car f l'est, et pour tout réel x :

 $\psi_a'(x) = f'(x+a) f(-x) - f(x+a) f'(-x) = k f(x+a) f(-x) - k f(x+a) f(-x) = 0$. La fonction ψ_a est donc constante, et pour tout réel $x : \psi_a(x) = \psi_a(0) = f(a)$.

On a donc pour tous les réels a et x : f(x+a)f(-x) = f(a), donc en multipliant par f(x) : f(x+a) = f(x) f(a).

2^{ème} PARTIE

1- Soient $a \in \mathbb{R}$, et $h \in \mathbb{R}$, suffisamment petit.

f étant dérivable, on a pour tout réel x, f(x + h) = f(x) + f'(x). h + h. $\varepsilon(h)$ avec $\lim \varepsilon(h) = 0$.

Comme f' = f, on a: $f(x + h) \approx f(x) (1 + h)$ (*)

On va démontrer par récurrence que $\forall n \in \mathbb{N}$, la propriété Q(n): « $f(a + nh) \approx f(a) (1 + h)^n$ » est vraie.

- Initialisation: n = 0: $f(a + 0) = f(a) (1 + h)^0$ donc $f(a + 0) \approx f(a) (1 + h)^0$ Q(0) est vraie.
- *Hérédité*: Soit $n \ge 0$ on suppose que Q(n) est vraie (i.e. $f(a+nh) \approx f(a) (1+h)^n$ HR). On a: $f(a+(n+1)h) = f((a+nh)+h) \approx f(a+nh) (1+h)$ (on utilise (*) avec x=a+nh), donc d'après HR: $f(a+(n+1)h) \approx f(a) (1+h)^{n+1}$.
- Conclusion: La propriété Q(n) est vraie pour n = 0, elle est héréditaire pour tout n∈ IN, donc:
 ∀n∈ IN, f(a + nh) ≈ f(a) (1 + h)ⁿ.
- **2- a)** Soit x > -1. On va démontrer par récurrence que $\forall n \in \mathbb{N}^*$, la propriété $P(n) : (1 + x)^n \ge 1 + nx$ » est vraie.
- *Initialisation*: $(1 + x)^1 = 1 + 1 \times x$ donc P(1) est vraie.
- *Hérédité*: Soit $n \ge 1$, on suppose que P(n) est vraie (i.e. $(1+x)^n \ge 1 + nx$ HR). $(1+x)^{n+1} = (1+x)^n \times (1+x)$; comme x > -1, 1+x > 0, donc d'après HR: $(1+x)^{n+1} \ge (1+nx)(1+x) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$.
- Conclusion: La propriété P(n) est vraie pour n = 1, elle est héréditaire pour tout n∈ IN*, donc:
 ∀n∈ IN*, (1 + x)ⁿ ≥ 1 + nx. On note (P) cette propriété.

b) Soient $x \in \mathbb{R}$, et $n \in \mathbb{N}$, tels que n > |x|. On a:

$$U_{n+1}(x) = \left(1 + \frac{x}{n+1}\right)^{n+1} = \left(1 + \frac{x}{n} - \frac{x}{n} + \frac{x}{n+1}\right)^{n+1} = \left(1 + \frac{x}{n} - \frac{x}{n(n+1)}\right)^{n+1} = \left(1 + \frac{x}{n}\right)^{n+1} =$$

On veut appliquer (P) au second facteur. Vérifions que $\frac{x}{n(n+1)\left(1+\frac{x}{n}\right)} \le 1$.

 $Vu \; que \; n > |\; x \; |, \quad 1 + \frac{x}{n} > 0 \; , \; donc \; ceci \; revient \; \grave{a} \; montrer \; que \; \; x \leq n(n+1) \left(1 + \frac{x}{n}\right) \; qui \; \acute{e}quivaut \; \grave{a} \; -x \leq n+1 \; , \; qui \; est \; and \; and$

vrai, puisque n > |x|. Donc, en remarquant encore que $1 + \frac{x}{n} > 0$:

$$U_{n+1}(X) \ge \left(1 + \frac{x}{n}\right)^{n+1} \left(1 - \frac{x}{n\left(1 + \frac{x}{n}\right)}\right) = \left(1 + \frac{x}{n}\right)^{n} \left(1 + \frac{x}{n} - \frac{x}{n}\right) = U_{n}(X).$$

On a donc $U_{n+1}\left(x\right)\geq U_{n}\left(x\right)$, donc la suite $\left(U_{n}\left(x\right)\right)$ est croissante.

c) On a $\frac{1}{V_n(x)} = U_n(-x)$, or ce qui précède est valable pour tout réel x, donc la suite $(U_n(-x))$ est croissante, et la

suite
$$\left(\frac{1}{V_n(x)}\right)$$
 aussi. On a donc $\forall n > |x|$: $\frac{1}{V_{n+1}(x)} \ge \frac{1}{V_n(x)}$.

 $(V_n(x))$ est une suite de réels positifs; la fonction inverse est décroissante sur \mathbb{R}_+^* , donc $V_{n+1}(x) \le V_n(x)$; la suite $(V_n(x))$ est donc décroissante.

d)
$$\frac{U_{n}(x)}{V(x)} = \left(1 + \frac{x}{n}\right)^{n} \left(1 - \frac{x}{n}\right)^{n} = \left(1 - \frac{x^{2}}{n^{2}}\right)^{n}$$
.

Comme n > |x|, $0 < 1 - \frac{x^2}{n^2} \le 1$, en utilisant (P) on obtient: $1 \ge \frac{U_n(x)}{V_n(x)} \ge 1 - \frac{x^2}{n}$.

On en déduit (comme $V_n\left(x\right) \geq 0$) que $U_n\left(x\right) \leq V_n(x)$ et $0 \leq V_n(x)$ - $U_n\left(x\right) \leq V_n\left(x\right) \times \frac{x^2}{n}$.

e) La suite $(V_n(x))_{|n| | x}$ étant décroissante, elle est majorée par son premier terme $|V_{n_0}(x)|$ $(n_0 = E(|x|) + 1)$, alors on a: $0 \le V_n(x) - U_n(x) \le V_{n_0}(x) \times \frac{x^2}{n}$, on applique le théorème des gendarmes, et on obtient : $\lim_{n \to \infty} (V_n(x) - U_n(x)) = 0.$

Finalement, on a: $(U_n(x))$ croissante, $(V_n(x))$ décroissante, $\forall n > |x|$, $U_n(x) \le V_n(x)$, et $\lim_{n \to +\infty} (V_n(x) - U_n(x)) = 0$. Les suites $(U_n(x))$ et $(V_n(x))$ sont donc adjacentes.

3- a)
$$U_n(0) = V_n(0) = 1$$
, $\forall n > |x|$, donc $exp(0) = \lim_{n \to +\infty} U_n(0) = \lim_{n \to +\infty} V_n(0) = 1$.

b) Soient $x \in \mathbb{R}$, $n \in \mathbb{N}$ tel que n > |x|, et $h \in \mathbb{R}$ tel que |h| < 1.

On a:
$$\left(1 + \frac{x+h}{n}\right)^n = \left(1 + \frac{x}{n} + \frac{h}{n}\right)^n = \left(1 + \frac{x}{n}\right)^n \left(1 + \frac{h}{n\left(1 + \frac{x}{n}\right)}\right)^n$$
.

Or vu les conditions imposées à x, n et h, on a : $\frac{h}{n\left(1+\frac{x}{n}\right)} \ge -1$, on a la conclusion en appliquant la propriété (P).

En passant à la limite dans l'inégalité précédente, on a: $\exp(x+h) \ge \exp(x)$ (1 + h).

En prenant x' = x + h, et h' = -h, on obtient:

$$\exp(x') \ge \exp(x'+h') \ (1-h'), \ \text{ou} \ \exp(x'+h') \le \frac{\exp(x')}{1-h'} \ . \ \text{Ce qui permet d'écrire} : \exp(x+h) \le \frac{\exp(x)}{1-h}$$
 On a donc pour tout réel x , et $\left| h \right| < 1$, $\exp(x) \times h \le \exp(x+h) - \exp(x) \le \exp(x) \times \frac{h}{1-h}$.

c) L'inégalité précédente donne:

$$\begin{aligned} & \text{pour } h > 0 \text{: } \exp(x) \leq \frac{\exp(x+h) - \exp(x)}{h} \leq \frac{\exp(x)}{1-h} \\ & \text{pour } h < 0 \text{: } \frac{\exp(x)}{1-h} \leq \frac{\exp(x+h) - \exp(x)}{h} \leq \exp(x). \end{aligned}$$

En faisant tendre h vers 0, on obtient d'après le théorème des gendarmes: $\lim_{h\to 0} \frac{\exp(x+h) - \exp(x)}{h} = \exp(x)$. Ainsi la fonction exp est dérivable sur \mathbb{R} , et sa dérivée est elle même.